## Photon Opacities in Highly-Magnetized Neutron Star Magnetospheres

Kun Hu (Rice U)
Matthew G. Baring (Rice U)
Zorawar Wadiasingh (GSFC)
Alice K. Harding (GSFC)

06/12/2019 @ GSFC

## Magnetars



Figure from Zhou et al. 2015

- long spin periods
   ~2-12s and high spin
   down rates
- high inferred magnetic fields > 10<sup>13</sup> G

$$B_p \sim 6.4 \times 10^{19} \sqrt{P\dot{P}}$$
 G

- persistent X-ray emission
- sporadic bursting activities

### **Persistent Emission**



Total spectra of 4U 0142+61 as measured with different instruments. Figure adapted from Abdo et al. (2010)

- in quiescent state, magnetars emit bright Xray with luminosities (10<sup>34</sup>-10<sup>36</sup> erg/s) exceeding spin down energy loss
- soft X-ray (<10 keV)</li>
   spectra : Thermal + PL
- hard X-ray (>10 keV)
   spectra : Flat PL
- spectral turnover at a few hundred keV

# Resonant inverse Compton scattering



- non-thermal hard X-ray persistent emission: resonant inverse Compton scattering
- electrons are accelerated along closed field lines
- currents/charge densities along closed field lines far exceed Goldreich-Julian values.
- extremely efficient due to the predominance of scatterings in the fundamental cyclotron resonance

Wadiasingh et al. (2018)

## Flaring Activities

Short Bursts

peak luminosity  $\sim 10^{37}$ - $10^{43}$  erg/s, last  $\sim 0.1$ s

Intermediate flares

lasting  $\sim 1-40 \text{ s}$ , peak luminosity  $\sim 10^{41}-10^{43} \text{ erg/s}$ 

Giant Flares

lasting~0.2 s, peak luminosity~10<sup>44</sup>-10<sup>47</sup> erg/s energy extending to ~ 1MeV

"fireball scenario" to explain radiative dissipation and cooling phases



Figure 1. (c) Not all the energy can be contained by the magnetosphere at radius  $R_n$  unless the total energy released is a very small fraction of the dipole magnetic energy of the star. As a result, the pressure of the photon-pair plasma drives a wind from the magnetosphere. This probably occurred in the 1979 March 5 event, but probably not in most ordinary SGR events.

#### Thompson & Duncan (1995)

# Quantum Electrodynamics in Strong Magnetic Fields





vacuum polarization

$$B_{\rm cr} = m_e^2 c^3 / (e\hbar)$$

 $\approx 4.41 \times 10^{13}$  Gauss





photon splitting
(c)

photon scattering (d)

From Meszaros 1992

#### Vacuum Polarization

- Photons are expected to be polarized in two linear normal modes in the presence of strong magnetic field.
- | mode (O-mode):
   photon's electric field
   vector parallel to the plane
   containing B and k
- Impose (X-mode):

   photon's electric field
   vector being normal to the plane containing B and k



## Magnetic Pair Creation



- γ+B−>e++e- occurs in strong magnetic fields B~B<sub>cr</sub> =4.413\*10<sup>13</sup> G
- has a threshold of  $2m_ec^2/sin\Theta_{\rm kB}$  for  $\parallel$  mode, and a factor of

$$1 + \sqrt{1 + 2B}$$
 higher for  $\perp$  mode.

- attenuation coefficients are polarization dependent  $(\perp, \parallel)$
- the attenuation coefficient:

$$\mathcal{R}_{\parallel,\perp}^{\mathrm{pp}} = \frac{\alpha_{\mathrm{f}}}{\lambda_{c}} B \sin \Theta_{\mathrm{kB}} \mathcal{F}_{\parallel,\perp} (\varepsilon_{\perp}, B) , \quad \varepsilon_{\perp} = \varepsilon \sin \Theta_{\mathrm{kB}}$$

### **Magnetic Pair Creation**





Fig. 2b

$$\mathcal{R}_{\parallel,\perp}^{\mathrm{pp}} = \frac{\alpha_{\mathrm{f}}}{\lambda_{c}} B \sin \Theta_{\mathrm{kB}} \mathcal{F}_{\parallel,\perp} (\varepsilon_{\perp}, B) ,$$

$$\varepsilon_{\perp} = \varepsilon \sin \Theta_{\rm kB}$$

From Daugherty & Harding 1983

## Magnetic Photon Splitting

- γ+B—>γ+γ occurs in strong magnetic fields B
- has no energy threshold



- attenuation is polarization dependent
- three splitting modes are allowed by CP symmetry:

$$\perp \rightarrow \parallel \parallel$$
,  $\parallel \rightarrow \perp \parallel$ , and  $\perp \rightarrow \perp \perp$ 

 only one of them is kinematically allowed in the weakly dispersive regime (Adler's selection rule):

$$\perp \rightarrow \parallel \parallel$$

## Magnetic Photon Splitting



attenuation coefficients:

$$\mathcal{R}_{\perp \to \parallel \parallel}^{\mathrm{sp}} = \frac{\alpha_{\mathrm{f}}^{3}}{60\pi^{2}\lambda_{c}} \varepsilon^{5} B^{6} \mathcal{M}_{1}^{2} \sin^{6} \Theta_{\mathrm{kB}}$$
$$= \frac{1}{2} \mathcal{R}_{\parallel \to \perp \parallel}^{\mathrm{sp}}$$

$$\mathcal{R}_{\perp \to \perp \perp}^{\mathrm{sp}} = \frac{lpha_{\mathrm{f}}^3}{60\pi^2 \lambda_c} \, \varepsilon^5 \, B^6 \, \mathcal{M}_2^2 \, \sin^6 \Theta_{\mathrm{kB}}$$

 M<sub>1</sub> and M<sub>2</sub> serve as reaction amplitude coefficients

photo splitting coefficient as functions of photon energies with different field strength. Figure from Baring & Harding (1997)

# Photon Opacity in NS Magnetosphere



$$au(l) = \int_0^l \mathcal{R} \, ds$$
  $\mathcal{R}(\epsilon,\mathsf{B},\Theta_{\mathrm{kB}})$ 

- Flat / curved spacetime
- Assume vacuum dipole field
- Photons are generally emitted parallel to the local magnetic field line or make small angle to it (resonant inverse Compton scattering)

# Photon Opacity in NS Magnetosphere



- Photons are emitted from star surface
- Photons are emitted along field loops (applicable to models)

## Attenuation Length & Escape energy of Photon Splitting



- The attenuation length L is defined to be the path length over which the optical depth equals unity (tau = 1)
- analytic approximation for the low altitude emission (black dotted line)
- The vertical asymptotic divergences define the escape energy
- Below these energies the magnetosphere is transparent to photon splitting

## **Escape Energy**



- Escape energies for light emitted from the surface as functions of emitting colatitude
- Green curves: photons emitted parallel to local field lines; red/blue curves: make small angel to field lines
- Bp < 1: pair creation dominates the attenuation; Bp >1 photon splitting dominates.

# Photon Opacity in NS Magnetosphere



- Photons are emitted from star surface
- Photons are emitted along field loops (applicable to models)

## Escape Energy (photon splitting)



- triangles represent polarization averaged cases
- red dots represent an empirical approximation for loop emission
- dotted curves represent the photons are shadowed by the star, i.e., they impact the surface if not attenuated.

## General Relativistic Opacity Construction

$$\omega = \frac{\varepsilon}{\sqrt{1-\Psi}}$$
 ,  $\Psi = \frac{r_s}{r} \equiv \frac{2GM}{c^2r}$ 

$$\mathbf{B}_{GR} = 3 \frac{B_p \Psi^3}{r_s^3} \left\{ \xi_r(\Psi) \cos \theta \, \hat{r} + \xi_{\theta}(\Psi) \sin \theta \, \hat{\theta} \right\} 
\xi_r(x) = -\frac{1}{x^3} \left[ \log_e (1 - x) + x + \frac{x^2}{2} \right] 
\xi_{\theta}(x) = \frac{1}{x^3 \sqrt{1 - x}} \left[ (1 - x) \log_e (1 - x) + x - \frac{x^2}{2} \right]$$

$$heta(\Psi) \; \equiv \; heta_{ ext{E}} + \Delta heta \; = \; heta_{ ext{E}} \pm \int_{\Psi}^{\Psi_{ ext{E}}} rac{d\Psi_r}{\sqrt{\Psi_b^2 - \Psi_r^2(1 - \Psi_r)}}$$

$$\sin \Theta_{kB} = \frac{\sqrt{\Psi_b^2 - \Psi^2(1 - \Psi)} - \Psi\sqrt{1 - \Psi} \, \xi(\Psi) \cot \theta}{\Psi_b \sqrt{1 + \left[\xi(\Psi)\right]^2 \cot^2 \theta}}$$

- GR influences: gravitational redshift, the deformation of the dipole field, curved photon trajectories
- GR are expected to increase the opacities in most parameter regimes

$$\tau(\Psi) = r_s \int_{\Psi}^{\Psi_{\rm E}} \frac{\mathcal{R}(\omega, \sin\Theta_{\rm kB}, |\boldsymbol{B}_{\rm GR}|) \, \Psi_b \, d\Psi_r}{\Psi_r^2 \sqrt{(1 - \Psi_r) \left\{ \Psi_b^2 - \Psi_r^2 (1 - \Psi_r) \right\}}}$$

## Escape Energy (splitting +pairs)



- solid curves represent results for curved spacetime
- dashed curves display a combination of pair creation and photon splitting
- GR effect is important for low attitude emission

## **Splittosphere**



- Colored contours
   represent the lowest
   possible emission
   altitude for transparency
   at a given colatitude
- Photon trajectories are plotted for selected emission points on the 50 keV contour
- dashed orange contour is a flat spacetime version of the 100 keV case

#### RICS cutoff energy and

#### ⊥ mode photon splitting escape energy



- Resonate inverse Compton scattering maximum cut off energies: solid/dashed curves
- Escape energies : dotted curves

## Summary

- Calculation of the opacities of pair creation and photon splitting provides upper bound to the visible energies
- provides constraints to the altitude of the hard X-ray emission from magnetars: for Bp = 10, the persistent and flaring emission must be produced with r\_max > 2; for Bp = 100, the emission must be produced with r\_max > 5
- strongly-polarized signatures are expected for future missions (AMEGO and e-ASTROGAM): determine which photon splitting mode operates in the magnetospheres of magnetars; phase-resolved spectropolarimetry can help determine geometric parameters like the inclination angle α

## Backup Slides





#### Wadiasingh et al. 2019



Spin-phase resolved model RICS spectra and signed polarization for different electron Lorentz and propagation influences.

- Spin-phase resolved model RICS spectra of a generic magnetar (at arbitrary normalization) overlaid on phase-averaged data for 4U 0412+61 along with a PL with exponential cutoff at 350 keV in dotted green.
- Without inclusion of QED opacities, the cutoff is kinematically attained and exponential in character
- Future missions (AMEGO and e-ASTROGAM) are expected to see these differences

### **Persistent Emission**



Total spectra of 4U 0142+61 as measured with different instruments. Figure adapted from Abdo et al.(2010)

- In quiescent state, magnetars emit quasithermal X-ray kT~0.5 keV
- soft X-ray luminosities exceed spin down energy loss
- hard X-ray (>10 keV)
   spectra : flat power law
   with a typical index ~1-2
- hard X-ray mechanism : resonant inverse
   Compton scattering

#### **Recurrent Short Bursts**



Spectrum of the magnetar SGR J1550-5418 burst detected on 2009 January 22 fitted by a two blackbody model.

Figure from Lin et al. (2012)

- often occur in storms lasting a month or more
- peak luminosity
   ~10<sup>37</sup>-10<sup>43</sup> erg/s, last
   ~ 0.1s
- spectra can be fit by comptonized model or bremsstrahlung model (~30 keV) or a two-blackbody model

### **Giant Flare**



- a hard spike lasting~0.2s, peak luminosity~10<sup>44</sup>-10<sup>47</sup> erg/s
- followed by an energetic tail persisting for several minutes
- only three giant flares have been recorded
- "fireball scenario" to explain radiative dissipation and cooling phases

The Blackbody temperature and the 20–100-keV time history for the 2004 SGR 1806–20 giant flare. Figure from Victoria M. Kaspi et al. (2017), adapted from Hurley et al. (2005)

# Photon Opacity in NS Magnetosphere



$$au(l) = \int_0^l \mathcal{R} \, ds$$

- Flat / curved spacetime
- Dipole field

$$m{B} = rac{B_p R_{
m NS}^3}{2r^3} \left( 2\cos\theta \, \hat{m{r}} + \sin\theta \, \hat{m{ heta}} 
ight)$$

 Photons are generally emitted parallel to the local magnetic field line or make small angle to it (resonant inverse Compton scattering)

### **Emission Mechanism**

### Thompson & Duncan (1995)



Figure 1. (c) Not all the energy can be contained by the magnetosphere at radius  $R_n$ , unless the total energy released is a very small fraction of the dipole magnetic energy of the star. As a result, the pressure of the photon-pair plasma drives a wind from the magnetosphere. This probably occurred in the 1979 March 5 event, but probably not in most ordinary SGR events.

## Wadiasingh et al. (2018)



- Burst emission: fireball scenario
- non-thermal soft Xray persistent emission: resonant cyclotron scattering near the atmosphere
- non-thermal hard Xray persistent emission: resonant Compton upscattering